Q 1		mark	comment	sub
(i)	N2L $\uparrow 1000-100 \times 9.8=100 a$ $a=0.2$ so $0.2 \mathrm{~m} \mathrm{~s}^{-2}$ upwards	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	N2L. Accept $F=m g a$ and no weight Weight correct (including sign). Allow if seen. Accept ± 0.2. Ignore units and direction	3
(ii)	$T_{\mathrm{BA}}-980=100 \times 0.8$ so tension is 1060 N	M1 A1	N2L. F = ma. Weight present, no extras. Accept sign errors.	2
(iii)	$T_{\mathrm{BA}} \cos 30=1060$ $T_{\mathrm{BA}}=1223.98 \ldots \text { so } 1220 \mathrm{~N}(3 \mathrm{s.} \mathrm{f.})$	M1 A1 A1	Attempt to resolve their (ii). Do not award for their 1060 resolved unless all forces present and all resolutions needed are attempted. If start again allow no weight. Allow $\sin \leftrightarrow \cos$. No extra forces. Condone sign errors FT their 1060 only cao	3
		8		

2		mark	comment	sub
	either Overall, N2L \rightarrow $\begin{aligned} & 135-9=(5+4) a \\ & a=14 \text { so } 14 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ For A, N2L \rightarrow $T-9=4 \times 14$ $\text { so } 65 \mathrm{~N}$ or $135-T=5 a$ $T-9=4 a$ Solving $T=65 \text { so } 65 \mathrm{~N}$	M1 A1 M1 A1 M1 A1 M1 A1	Use of N2L. Allow $F=m g a$ but no extra forces. Allow 9 omitted. N2L on A or B with correct mass. $F=$ ma. All relevant forces and no extras. cao * 1 equa ion in T and a. Allow sign errors. Allow $F=m g a$ Both equations correct and consistent Dependent on M^{*} solving for T. cao.	4
		4		

Q3				
(i)	String light and pulley smooth	E1	Accept pulley smooth alone	
(ii)	$5 g(49) \mathrm{N}$ thrust	M1 B1 A1	Three forces in equilibrium. Allow sign errors. for $15 g$ (147) N used as a tension $5 g$ (49) N thrust. Accept $\pm 5 g$ (49). Ignore diagram. [Award SC2 for $\pm 5 g(49) \mathrm{N}$ without 'thrust' and SC3 if it is]	

Q4				
(i)	$\begin{aligned} & P-800=20000 \times 0.2 \\ & P=4800 \end{aligned}$	M1 A1 A1	N2L. Allow $F=m g a$. Allow wrong or zero resistance. No extra forces. Allow sign errors. If done as 1 equn need $m=20000$. If A and B analysed separately, must have 2 equns with ' T '. N2L correct.	3
(ii)	New accn $4800-2800=20000 a$ $a=0.1$	M1 A1	$F=m a$. Finding new accn. No extra forces. Allow 500 N but not 300 N omitted. Allow sign errors. FT their P	2
(iii)	$T-2500=10000 \times 0.1$ $T=3500 \text { so } 3500 \mathrm{~N}$	M1 A1	N2L with new a. Mass 10000. All forces present for A or B except allow 500 N omitted on A. No extra forces cao	2
				7

(i) $\quad F=14000 \times 0.25$

$$
\text { so } 3500 \mathrm{~N}
$$

A1
(ii) $4000-R=3500$ so 500 N
(iii) $1150-R_{\mathrm{T}}=4000 \times 0.25$
so 150 N
(iv) either

Component of weight down slope is

Extra driving force is cpt of $m g$ down slope
$14000 \mathrm{~g} \sin 3^{\circ}$
$=14000 \times 9.8 \times 0.0523359 \ldots=7180.49 \ldots$
so 7180 N (3 s. f.)
or
$D-500-14000 g \sin 3=14000 \times 0.25$
$D=11180.49 \ldots$ so extra is $7180 \mathrm{~N}(3 \mathrm{s} .$.f)
A1

M1

M1 Use of N2L . Allow $F=m g a$ and wrong mass. No extra forces.

B1 FT F from (i). Condone negative answer.

M1 N2L applied to truck (or engine) using all forces required. No extras. Correct mass. Do not allow use of $F=m g a$. Allow sign errors.
A1 cao

M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$.

M1 May be implied. Correct mass. No extra forces. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$

M1 Attempt to find cpt of weight (allow wrong mass). Accept $\sin \leftrightarrow \cos$. Accept use of $m \sin \theta$. N2L with all terms present with correct signs and mass.
No extras. FT 500 N. Accept their $500+150$ for resistance. Must have resolved weight component. Allow $\sin \leftrightarrow \cos$.
A1 Must be the extra force.
(i) $T^{\mathrm{AB}} \sin \alpha=147$
so $T_{\mathrm{AB}}=\frac{147}{0.6}$
$=245$ so 245 N
(ii) $T_{\mathrm{BC}}=245 \cos \alpha$
$=245 \times 0.8=196$
(iii) Geometry of A, B and C and weight of B the same and these determine the tension
(iv)

either

Realise that 196 N and 90 N are horiz and vert forces where resultant has magnitude and line of action of the tension
$\tan \beta=90 / 196$
$\beta=24.6638 \ldots$ so 24.7 (3 s. f.)
$T=\sqrt{196^{2}+90^{2}}$
$T=215.675 \ldots$ so 216 N (3 s. f.)
or
$\uparrow T \sin \beta-90=0$
$\rightarrow T \cos \beta-196=0$
Solving $\tan \beta=\frac{90}{196}=0.45918 \ldots$
$\beta=24.6638 \ldots$ so 24.7 (3 s. f.)
$T=215.675 \ldots$ so 216 N (3 s. f.)
(v) Tension on block is 215.675.. N (pulley is smooth and string is light)
$M \times 9.8 \times \sin 40=215.675 \ldots+20$
$M=37.4128 . .$. so 37.4 (3 s. f.)

M1 Attempt at resolving. Accept $\sin \leftrightarrow \cos$. Must have T resolved and equated to 147.

B1 Use of 0.6. Accept correct subst for angle in wrong expression.
A1 Only accept answers agreeing to 3 s. f.
[Lami: M1 pair of ratios attempted; B1 correct sub;A1]
3

No extra forces.
B1 Correct orientation and arrows
B1 'T' 196 and 90 labelled. Accept 'tension' written out.

Allow for only β or T attempted

B1 Use of $\arctan (196 / 90)$ or $\arctan (90 / 196)$ or equiv

M1 Use of Pythagoras
E1

B1 Allo if $T=216$ assumed
B1 Allo if $T=216$ assumed
M1 El inating T, or...
A1 [If $T=216$ assumed, B 1 for β; B 1 for check in $2^{\text {nd }}$
E1 equation; E0]
B1 May be implied. Reasons not required.
M1 Equating their tension on the block unresolved ± 20 to weight component. If equation in any other direction, normal reaction must be present.
A1 Correct
A1 Accept answers rounding to 37 and 38

7		mark		Sub
(i)		B1	All forces present. No extras. Accept $m g$, w etc. All labelled with arrows. Accept resolved parts only if clearly additional. Accept no angles	1
(ii)	Resolve parallel to the plane $10+T \cos 30=4 g \cos 30$ $T=27.65299 \ldots \text { so } 27.7 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 A1	All terms present. Must be resolution in at least 1 term. Accept $\sin \leftrightarrow \cos$. If resolution in another direction there must be an equation only in T with no forces omitted. No extra forces. All correct Any reasonable accuracy	3
(iii)	Resolve perpendicular to the plane $R+0.5 T=2 g$ $R=5.7735 \ldots \text { so } 5.77 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 A1	At least one resolution correct . Accept resolution horiz or vert if at least 1 resolution correct. All forces present. No extra forces. Correct. FT T if evaluated. Any reasonable accuracy. cao.	3
	total	7		

